Q. 4 (a) Find the shortest path between a and z for the following graph

(b) Let G be a connected planer graph with P vertices and q edges. Where $P \geq 3$. Then prove that

$$
\mathrm{q} \geq 3 \mathrm{P}-6
$$

Q. 5 (a) What is the solution of the recurrence relation

$$
\text { with } \mathrm{a}_{0}=2 \quad \text { and }=\mathrm{a}_{\mathrm{n}-1}+2 \mathrm{a}_{\mathrm{n}-2} \text { and } \mathrm{a}_{1}=7 \text { ? }
$$

(b) Explain Discrete numeric function.
Q. 6 a) Write the generating function for the sequence $\left\{a_{r}\right\}_{r}$ defined by

$$
a_{r}=\frac{(-1)^{r}(r+2)(r+1)}{2}
$$

(b) Explain injective and subjective maphing
Q. 7 a) Determine the particular solution and general solution the given initial condren

$$
x_{n}-2 x_{n-1}=6 n ; x_{1}=2
$$

(b) Differentiate between a function and relation.
Q. 8 Write short notes
(a) Defined Euler graph and Eulerian path
(b) Write Properties of lattices.

Roll No.

MCA-14

MCA-I SEMESTER

Examination, Jan.- 2019

Discrete Mathematics Structure

Time: Three Hours

Maximum Marks: 70

Note: i) \&thempt any five questions (each question carries equal marks)
To Prove that
(a) $\quad A-(B \cup C)=(A-B) \cap(A-C)$.
(b) Show by mathematical induction method that

$$
1^{2}+3^{2}+\ldots \ldots \ldots \ldots \ldots \ldots+(2 n-1)^{2}=\frac{n(n+1)(2 n-1)}{3}
$$

Q. 2 (a) In a Boolean algebra Prove the following
$a \cdot b+b \cdot c+c \cdot a=(a+b) .(b+c) .(c+a)$
(b) Prove that if L be a founded distribution lattice and an element in L Possesses a complement then this is unique.
Q. 3 Prove that the following statement is a tautology

$$
(\mathrm{P} \Rightarrow \mathrm{q}) \mathrm{vr} \Leftrightarrow[(\mathrm{Pvr}) \Rightarrow(\mathrm{qvr})]
$$

