M.Tech. (PS)-I Sem. (Reg. / Ex.)
 Examination, March.-2021
 Advance Course in Electrical Machines
 Time: Three Hours
 Maximum Marks:70

Note: Attempt any five questions. (Each question carries equal marks
Q. 1 (a)

What is generalized model of rotating electrical machines? Flow are the various windings of a machine represented by the primitive machine?
(b) Derive the voltage equations and expression for the electrical torque of the Kron's primitive machine.
Q. 2 Explain the basic reason of using transformations electrical macilines. Obtain identical transformations for currents and voltages from rotating balanced 3phase ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) winding to a rotating balanced 2-phase (α, β) winding.
Q. 3 Write the general voltage equations for a metadyne generator with zero compensation. If a load impeduice $o f(R L+L i p)$ is connected across the output terminals, then derive the transient and steady-state expression for the load voltage.
Q. 4 (a) Draw the generalized Mathematical Model of a polyphase induction machine. Write down voltage equations for this model obtain there from the equivalent circuit for a pul y-phase induction motor.
(b) Enumerate the most common problems concerning the dynamics of induction motors.
Q. 5 (a) A 2301, 4-pole, 50 Hz single phase induction motor has the following constraints and losses: Stator resistance and leakage reactance: 2.3 a 3.2
n. Rotor resistance and ieakagc reactance: 4.2 fl , 32 CI (referred to stator). Magnetizing reactance : 74 CA Core is $=98$ Watts. Friction and wintase loss $=30$ Watts. Determine the stator cur en?. p.f. power output, torque and efficiency ara slip of 0.05 , with the auxiliary winding men.
(b) Explain the constructional feytres and principle of working of schrage motor.
Q. 6 (a) Explain how Park's transformations transform equations in $\mathrm{a}, \mathrm{b}, \mathrm{c}$ variables to $\mathrm{d}, \mathrm{q}, \mathrm{o}$ variables.
(b) From the phasor diagram of a salient pole alternator working at a leading pf, but with pf angle 0 less than load angle obtain the following relation: E1 $=\mathrm{V}$, s4545+ I. ra $\cos (6-0)+\mathrm{IdXd}$.
Q. 7 (a) Explatin the various reactance's and time constants from the 9 -axis equivalent circuit of a 3-phase synchronous machine.

During the balanced 3-phase short-elm:L.1i analysis, explain why a-axis parameters are mainly involved.
Q. 8 Write short notes (Any two)
(a) Commutator machine
(b) Cross field theory of D.C. machine
(c) Single paring of 3- phase induction motors.

