a) Reduce the following matrix into its normal form and find its rank.

$$
A=\left[\begin{array}{cccc}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right]
$$

\qquad \\ \\ \\ \section*{Enroll No \\ \\ \\ \\ B.Tech.- II Sem (Ex.) \\ \\ \\ \\ Examination, March-2021 \\ \\ \\ \\ Mathematics-II \\ \\ \\ \\ Time: Three Hours \\ \\ \\ \\ MA-21} \\ \\ \\ \\ MA-21} \\ \\ \\ \\ MA-21} \\ \\ \\ \\ MA-21}

Maximum Marks:70

b) Find the Eigen values and Eigen vectors for the given matrix.
$A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
Q. 6 a) Obtain the partial differential equation by eliminating the arbitrary function f :

$$
z=f(y / x)
$$

b) Solve the following p.d.e
$x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$
Q. 7 a) Solve the partial differential equation $y q-x_{1}=z$
b) Solve the equation $x^{2} p^{2}+y^{2} q^{2}=z^{2}$
Q. 8 a) Solve the following differential equation by method of variation of parameter.

$$
\frac{d^{2} y}{d x^{2}}+y=\tan x
$$

b) Obtain the partial differential equation from the relation $z=(x+a)(y+b)$

Note: Attemet aly five questions. (Each question carries equal marks
Q. 1

Solve $\frac{d x}{d t}+y=\sin t$

$$
\frac{d y}{d t}+x=\cos t
$$

b) Solve the differential equation
$\frac{d^{2} y}{d x^{2}}-2 \tan x \cdot y-5 y=0$ by reducing it in normal form.
$\mathrm{A}=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right\rfloor$
Q. $2 \quad$ a) \quad Solve $y d x+\left(1-x^{2}\right) \tan ^{-1} x \cdot d y=0$
b) Solve the differential equation

$$
x d y-y d x=\sqrt{x^{2}+y^{2}} d x
$$

Q. $3 \quad$ a) \quad Solve $\left[\frac{\partial^{3} x}{\partial x^{3}}-3 \frac{\partial^{3} x}{\partial x^{2} \partial y}+2 \frac{\partial^{3} z}{\partial x \partial y^{2}}=0\right]$
b) Solve the partial differential equation

$$
\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-3\right) z=0
$$

Q. $4 \quad$ a)

Solve the partial differential equation

$$
\left\lfloor\frac{\partial^{2} z}{\partial x^{2}}+3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=x+y\right\rceil
$$

b) Solve the equation $z p+y q=x$

