\qquad
BCA-14
BCA $1^{\text {st }}$ year
Examination - June 2019
Discrete Mathematics

- Time: Three Hours

Maximum Marks : 50
Note: i) Attemer questions.(Ques.no. 1 is Compulsory)
Section-A
Q. 1 DGjoctive Type Question.
$(1 \times 5=5)$
(i) $a+(a . b)=$
(a) a
(b) b
(c) $(a . b)$
(d) $a+b$
(ii) $A-(B \cap C)=$
(a). $(A-B) \cup(A-C)$
(b). $(A-B) \cap(A-C)$
(c). $A(\mathrm{~d}) \cdot(B \cap C)$
(d)
(iii) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$
(a). 0
(b). 1
(c). x
(d). none
(iv) $\int \frac{1}{1+x^{2}} d x=$
(a). $\tan ^{-1} x+c$
(b). $\cot ^{-1} x+c$
(c). $\sin ^{-1} x+c$
(d). none
(v)In Partial differentiation number of independent variables are
(a). 0
(b). 1
(c). 2
(d). 2 or more than 2
(2)

Section - B

Short answer type question attempt any three question $(5 \times 3=15)$

Q2.(i) Show that $a+a=a$ and $a . a=a$
Or
Define with Example
(a). Multigraph
(b) Tree
(ii) Show that $A \times(B \cap C)=(A \times B) \cap(A \times C)$

Or
Define with example
(a) Binary Relation
(b) Function
(iii) Evaluate $\lim _{x \rightarrow 1 / 2} \frac{4 x^{2}-1}{2 x-1}$

Or
Evaluate $\lim _{x \rightarrow 2} \frac{4}{x^{2}-4}+\frac{1}{2-x}$
(iv) Evaluate $\int(2-x)(x+1) d x$

Or
Evaluate $\int \frac{d x}{1+\cos x}$
(v) If $z=\frac{x-y}{x+y}$, Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

Or
If $z=x^{2} y+x y^{2}$, Find $\frac{\partial^{2} z}{\partial x}$ and $\frac{\partial^{2} z}{\partial y}$

Section - C

Long answer type question (attempt any five)
Q3. Show that $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$ and $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$

Or
Explain Boolean Variables and Boolean Functions.
(ii) Show that the binary relation defined by $R=\{(a, b)=2$ divides $(a-b)\}$ is an Equivalence relation Or
Explain Different type of mappings
(iii) Show that thention f defined by $f(x)=\left\{\begin{array}{r}x \sin \frac{1}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$ is continuous at $x=0$.

Or
asvaluate $\frac{d y}{d x}$, if $x^{2}+2 x y+y^{3}=40$
v) Evaluate $\int \frac{\cot x}{\log (\sin x)} d x$

Or
Evaluate $\int \frac{1+\sin 2 x}{x+\sin ^{2} x} d x$
(v) If $z=f(x, y)$ is homogenous function of degree n, then show That

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=n z
$$

If $u=\log \frac{x^{4}+y^{4}}{x+y}$, then prove that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 u
$$

